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Seeing multiple ways to solve a problem is one of the beautiful things about using the tools of Math-
ematics in creative ways. This integral, done two different ways, reveals something interesting about
two inverse trig functions.

Question.

Integrate: ∫
1

x
√
x4 − 64

dx

Solution.

The experienced Calculus student will recognize that this appears to be a trigonometric substitution situation.
Indeed, this is true, in one sense. Here are two ways to approach this.

1 First way: Trig substitution

The first important thing to note here is that we can consider x4 to be (x2)2. Consider a right triangle labeled as
such:

√
x4 − 64

8

x2

θ

Using the rules of trig substitution, we let:

secθ =
x2

8

8secθ = x2 (rearrange, this will be useful later)
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Taking a derivative, we have:

8secθtanθdθ = 2x dx

4secθtanθ

x
dθ = dx (solve for dx)

Substituting into the original integral, we have:∫
1

x
√
x4 − 64

dx =

∫
1

x
√
(8secθ)2 − 64

· 4secθtanθ
x

dθ (substitute)

=

∫
4secθtanθ

x2
√
(8secθ)2 − 64

dθ (rearrange)

=

∫
4secθtanθ

8secθ
√
(8secθ)2 − 64

dθ (substitute useful x2 term)

=
1

2

∫
���secθtanθ

���secθ
√

(8secθ)2 − 64
dθ (simplify)

=
1

2

∫
tanθ√

64sec2θ − 64
dθ (expand under radical in denominator)

=
1

2

∫
tanθ

8
√
sec2θ − 1

dθ (factor denominator)

=
1

16

∫
tanθ√
tan2θ

dθ (simplify denominator)

=
1

16

∫
���tanθ

����√
tan2θ

dθ (the trig sub is working!)

=
1

16

∫
dθ (simplify)

=
1

16
θ + C (integrate)

Undoing our substitution, first solving for θ:

secθ =
x2

8

sec−1secθ = sec−1

(
x2

8

)
(inverse sec of both sides)
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���
sec−1

��secθ = sec−1

(
x2

8

)
(cancel)

θ = sec−1

(
x2

8

)
(simplify)

So, our solution is: ∫
1

x
√
x4 − 64

dx =
1

16
sec−1

(
x2

8

)
+ C

2 Second way: u-substitution that leads to trig integral

Starting with our original integral, let u =
√
x4 − 64 and perform a u-substitution:

u =
√
x4 − 64

x4 = u2 + 64 (rearrange, this will be useful later)

Taking a derivative, we have:

du =
1

2
√
x4 − 64

· 4x3 dx

dx =

√
x4 − 64 du

2x3
(solve for dx)

Substituting into the original integral, we have:∫
1

x
√
x4 − 64

dx =

∫ √
x4 − 64 du

2x3 · x
√
x4 − 64

(substitute)

=

∫
�����√
x4 − 64 du

2x3 · x�����√
x4 − 64

(cancel)

=
1

2

∫
du

x4
(simplify)

=
1

2

∫
du

u2 + 64
(substitute useful x4 term)

=
1

2

∫
du

u2 + 82
(simplify denominator)

=
1

2

∫
du

82 · [(u8 )2 + 1]
(factor denomnator)

=
1

2 · 82

∫
du

[(u8 )
2 + 1]

(simplify)
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=
1

128

∫
du

[(u8 )
2 + 1]

(simplify)

To deal with this arctan integral, we can make another substitution:

v =
u

8

dv =
1

8
du (differentiate)

du = 8dv (solve for du)

Substituting:

1

128

∫
du

[(u8 )
2 + 1]

=
1

128

∫
8dv

v2 + 1

=
1

16

∫
dv

v2 + 1
(factor and simplify)

=
1

16
tan1v + C (integrate)

Undoing the v and u substitutions, we get:

1

16
tan1v + C =

1

16
tan−1u

8
+ C (undoing v, going back to u)

=
1

16
tan−1

√
x4 − 64

8
+ C (undoing u, going back to x)

So, our solution is: ∫
1

x
√
x4 − 64

dx =
1

16
tan−1

√
x4 − 64

8
+ C

3 Wait. These two solutions don’t look the same.

We got two answers for the given integral:

y =
1

16
sec−1

(
x2

8

)
+ C

and
y =

1

16
tan−1

√
x4 − 64

8
+ C
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The easiest way to see that these are the same is to check out the graphs in Desmos.1

A more interesting way to see that these are the same is by doing some algebra that can lead us to a simple proof.
Let’s have a look.

An easy way to do this - with a proof mindset - is to manipulate each expression for y separately and see if we can
get them to look like each other. The thing that makes this the toughest, to me, is the inverse trig functions in
both expressions. If we could isolate the inverse trig functions and take the inverse of those inverse functions, then
the world of trig identities takes center stage as the main path to solution.2 Let’s start with the first expression
for y that we got from the trig sub method:

y =
1

16
sec−1

(
x2

8

)
+ C

y − C =
1

16
sec−1

(
x2

8

)
(move C to the other side)

16(y − C) = sec−1

(
x2

8

)
(clear the fraction by multiplying)

sec[16(y − C)] = sec

[
sec−1

(
x2

8

)]
(take sec of both sides)

sec[16(y − C)] =��sec

[
���
sec−1

(
x2

8

)]
(cancel)

sec[16(y − C)] =
x2

8
(simplify)

8sec[16(y − C)] = x2 (pause here) (1)

Now, let’s do a similar thing with the second solution, gotten by the u-substitution method:

y =
1

16
tan−1

√
x4 − 64

8
+ C

y − C =
1

16
tan−1

√
x4 − 64

8
(move C to the other side)

16(y − C) = tan−1

√
x4 − 64

8
(clear the fraction by multiplying)

tan[16(y − C)] = tan

[
tan−1

√
x4 − 64

8

]
(take the tan of both sides)

1The graphs do not include the +C portion of the answers; if you read through the algebra that follows, you will see why they’re
not important for showing equality.

2There is a world of inverse trig identities, but I do not have them memorized, and each is fraught with domain restrictions, etc.
that can largely be avoided by inverting those inverse functions as I will do here. (Trust me.)
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tan[16(y − C)] =��tan

[
���
tan−1

√
x4 − 64

8

]
(cancel)

tan[16(y − C)] =

√
x4 − 64

8
(simplify)

8tan[16(y − C)] =
√
x4 − 64 (clear the fraction by multiplying)

(
8tan[16(y − C)]

)2

= x4 − 64 (square both sides to clear radical)

64tan2[16(y − C)] = x4 − 64 (square the left hand side)

64tan2[16(y − C)] + 64 = x4 (move the 64 to the other side)

64

(
tan2[16(y − C)] + 1

)
= x4 (pause here) (2)

Collecting our two results from both expressions for y, we have:

x2 = 8sec[16(y − C)]

and
x4 = 64

(
tan2[16(y − C)] + 1

)
In both expressions, we see that the angle for the each of the trig functions is 16(y−C). Let’s make a substitution
of Θ = 16(y − C) to clean our expressions up a bit, leaving us with:

x2 = 8secΘ

and
x4 = 64(tan2Θ+ 1)

Noticing that x4 is just (x2)2, we can start the proof portion of this check, by asking:

(x2)2
?
= x4

(8secΘ)2
?
= 64(tan2Θ+ 1) (substitute)

64sec2Θ
?
= 64(tan2Θ+ 1) (square left side)

64sec2Θ
?
= 64sec2Θ (apply Pythagorean identity)

Yes! Yes, it is! Thank you, Pythagoras! For completeness, we do have to say that this is true for all angles Θ that
do not produce cosΘ = 0. That is, we have a domain restriction of, Θ ̸= π

2 (2n+ 1), for any integer, n; in words:
we eliminate any odd-integer multiples of π

2 .

Done.
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Reporting errors and giving feedback

I am so pleased that you have downloaded this study guide and have considered the techniques herein. To that
end, I am the only writer and the only editor of these things, so if you find an error in the text or calculations,
please email me and tell me about it! I am committed to prompt changes when something is inaccurate. I also
really appreciate it when someone takes a moment to tell me how I’m doing with these sorts of things, so please
do so, if you feel inclined.

My email address is: phil.petrocelli@gmail.com.

Please visit https://mymathteacheristerrible.com for other study guides. Please tell others about it.

Please donate

I write these study guides with interest in good outcomes for math students and to be a part of the solution. If
you would consider donating a few dollars to me so that these can remain free to everyone who wants them, please
visit my PayPal and pay what you feel this is worth to you. Every little bit helps.

My PayPal URL is: https://paypal.me/philpetrocelli.

Thank you so much.
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