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Solving trigonometric equations is often an exercise in agility with various trig identities. There are
also many ways to approach trig equations. Here are a couple that I did with a student recently.

Question.

Solve the following:

tan2x− 2cosx = 0

.

Solution.

For this one, I opted to convert to sines and cosines straight away. So:

tan2x− 2cosx = 0

sin2x

cos2x
− 2cosx = 0 (use tanθ =

sinθ

cosθ
)

sin2x

cos2x
− 2cosx · cos2x

cos2x
= 0 (apply common denominator)

sin2x− 2cosx · cos2x
cos2x

= 0 (combine fractions)

Now, a fraction is zero when the numerator is zero and the denominator is not zero. If we place the restriction
that cos2x ∕= 0, then we can just examine the numerator:

sin2x− 2cosx · cos2x = 0

2sinx · cosx− 2cosx · cos2x = 0 (expand sin2x)

2cosx(sinx− cos2x) = 0 (factor)

cosx(sinx− cos2x) = 0 (divide by 2)

cosx(sinx+ 2sin2x− 1) = 0 (expand cos2x)

cosx(2sin2x+ sinx− 1) = 0 (rearrange)

cosx(2sinx− 1)(sinx+ 1) = 0 (factor the quadratic in sinx)
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Fully factored and equal to zero, we can take each factor, set it equal to zero, and solve:

cosx = 0

x =
π

2
,
3π

2

2sinx− 1 = 0

2sinx = 1

sinx =
1

2

x =
π

6
,
5π

6

sinx+ 1 = 0

sinx = −1

x =
3π

2

Remember, we placed a restriction: cos2x ∕= 0, so we must make sure to throw out any values of x where cos2x is
zero:

cos2x ∕= 0

2x ∕= π

2
,
3π

2

x ∕= π

4
,
3π

4

Since none of the our answers were x = π
4 ,

3π
4 we have five answers on x[0, 2π]:

x =
π

2
,
3π

2
,
π

6
,
5π

6
,
3π

2

Done.
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Question.

Solve the following:

(sin2x+ cos2x)2 = 1

.

Solution.

If we pause for a second, we can be a little crafty with this one and avoid a lot of terrible-looking FOILing. Straight
away, we can take the square root of both sides:

(sin2x+ cos2x)2 = 1


(sin2x+ cos2x)2 = ±
√
1 (must have the ± to avoid losing answers!!!)

sin2x+ cos2x = ±1 (simplify)

Now, this is really two equations:
sin2x+ cos2x = 1

and

sin2x+ cos2x = −1

Let’s solve both.

sin2x+ cos2x = 1

sin2x+ cos2x = sin2x+ cos2x (”expand”1)

sin2x+ cos2x− sin2x = sin2x+ cos2x (expand cos2x)

sin2x− sin2x = sin2x (cancel cos2x on both sides)

2sinx · cosx− 2sin2x = 0 (expand sin2x)

sinx · cosx− sin2x = 0 (divide both sides by 2)

sinx(cosx− sinx) = 0 (factor)

So:

sinx = 0

x = 0,π, 2π

and:

cosx− sinx = 0

cosx = sinx

x =
π

4
,
5π

4
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And now the second equation:

sin2x+ cos2x = −1

sin2x+ cos2x− sin2x = −sin2x− cos2x (”expand”− 1)

sin2x+ cos2x = −cos2x (cancel − sin2x on both sides)

2sinx · cosx+ 2cos2x = 0 (expand sin2x)

cosx(sinx+ cosx) = 0 (divide both sides by 2, then factor)

So:

cosx = 0

x =
π

2
,
3π

2

and:

sinx+ cosx = 0

sinx = −cosx

x =
3π

4
,
7π

4

Nine answers on x[0, 2π]:

x = 0,π, 2π,
π

4
,
5π

4
,
π

2
,
3π

2
,
3π

4
,
7π

4

Done.
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